资源类型

期刊论文 445

会议视频 9

年份

2023 42

2022 37

2021 36

2020 32

2019 34

2018 18

2017 31

2016 17

2015 22

2014 22

2013 17

2012 26

2011 22

2010 8

2009 15

2008 17

2007 18

2006 3

2005 2

2004 2

展开 ︾

关键词

DX桩 9

承载力 9

容量 4

碳中和 4

节能减排 4

可持续发展 3

减灾 2

可再生能源 2

工程管理 2

抗拔 2

温室气体 2

生物质 2

5% 法 1

700 MW级水电机组 1

C-Bézier曲面;降阶;边界约束 1

Fuzzy几何规划 1

IP语音 1

Laplacian特征映射 1

Nd-Fe-B磨削油泥 1

展开 ︾

检索范围:

排序: 展示方式:

Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1714-0

摘要:

● The emission reduction causes significant change in organic aerosol composition.

关键词: Emission control     Secondary organic aerosol     Atmospheric oxidizing capacity     Holiday effects     COVID-19 lockdown    

Will Germany move into a situation with unsecured power supply?

Harald SCHWARZ

《能源前沿(英文)》 2019年 第13卷 第3期   页码 551-570 doi: 10.1007/s11708-019-0641-z

摘要: Together with a huge number of other countries, Germany signed the Paris Agreements in 2015 to prevent global temperature increase above 2°C. Within this agreement, all countries defined their own national contributions to CO reduction. Since that, it was visible that CO emissions in Germany decreased, but not so fast than proposed in this German nationally determined contribution to the Paris Agreement. Due to increasing traffic, CO emissions from this mobility sector increased and CO emission from German power generation is nearly constant for the past 20 years, even a renewable generation capacity of 112 GW was built up in 2017, which is much higher than the peak load of 84 GW in Germany. That is why the German National Government has implemented a commission (often called “The German Coal Commission”) to propose a time line: how Germany can move out of coal-fired power stations. This “Coal Commission” started its work in the late spring of 2018 and handed over its final report with 336 pages to the government on January 26th, 2019. Within this report the following proposals were made: ① Until 2022: Due to a former decision of the German Government, the actual remaining nuclear power generation capacity of about 10 GW has to be switched off in 2022. Besides, the “Coal Commission” proposed to switch off additionally in total 12.5 GW of both, hard coal and lignite-fired power plants, so that Germany should reduce its conventional generation capacity by 22.5 GW in 2022. ② Until 2030: Another 13 GW of German hard coal or lignite-fired power plants should be switched off. ③ Until 2038: The final 17 GW of German hard coal or lignite-fired power plants should be switched off until 2038 latest. Unfortunately the “Coal Commission” has not investigated the relevant technical parameter to ensure a secured electric power supply, based on German’s own national resources. Because German Energy Revolution mainly is based on wind energy and photovoltaic, this paper will describe the negligible contribution of these sources to the secured generation capacity, which will be needed for a reliable power supply. In addition, it will discuss several technical options to integrate wind energy and photovoltaic into a secured power supply system with an overall reduced CO emission.

关键词: CO2 reduction     mobility sector     renewable generation     coal commission     secured power generation capacity     reliable power supply     power-to-gas     power-to-heat    

Reduction of hexavalent chromium with scrap iron in a fixed bed reactor

Yin WANG, Xuejiang WANG, Xin WANG, Mian LIU, Siqing XIA, Daqiang YIN, Yalei ZHANG, Jianfu ZHAO

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 761-769 doi: 10.1007/s11783-012-0413-z

摘要: The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g Fe at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L , EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g Fe at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L , pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g Fe at influent concentrations of 1, 4, and 8 mg·L (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr ·g Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.

关键词: hexavalent chromium     scrap iron     reduction capacity     drinking water    

Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance

Lijing MENG, Licheng LIU, Xuehong ZI, Hongxing DAI, Hong HE, Zhen ZHAO, Xinping WANG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 164-171 doi: 10.1007/s11783-010-0019-2

摘要: A new method called ultrasonic-assisted membrane reaction (UAMR) was reported for the fabrication of ceria-zirconia solid solution. A series of ceria-zirconia solid solutions with different Ce/Zr molar ratios were prepared by the UAMR method and characterized by X-ray diffraction (XRD), N adsorption, hydrogen temperature-programmed reduction (H-TPR), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques. The UAMR method proved to be superior, especially when the Ce/Zr molar ratio was lower than 1, in fabricating ceria-zirconia solid solutions with large BET surface area, high oxygen storage capacity (OSC), and low reduction temperature.

关键词: membrane reaction     ceria-zirconia     Ce/Zr molar ratio     solid solution     hydrogen temperature-programmed reduction (H2-TPR)    

An overview of the development history and technical progress of China’s coal-fired power industry

Weiliang WANG, Zheng LI, Junfu LYU, Hai ZHANG, Guangxi YUE, Weidou NI

《能源前沿(英文)》 2019年 第13卷 第3期   页码 417-426 doi: 10.1007/s11708-019-0614-2

摘要: As the main power source of China, coal-fired power industry has achieved a great progress in installed capacity, manufacturing technologies, thermal efficiency, as well as pollutant control during the past century. With the fast development of renewable energies, coal-fired power industry is experiencing a strategic transformation. To specify the development of coal-fired power industry, its development history is reviewed and the technical progresses on aspects of thermal efficiency, pollutants control and peaking shaving capacity are discussed. It is concluded that the role of China’s coal-fired power source would be transformed from the dominant position to a base position in power source structure. Considering the sustainable development of coal-fired power industry in energy conservation, emission control, and utilization of renewable energies, it is suggested that the national average thermal efficiency should be improved by continual up-gradation of units by using advanced technologies and eliminating outdated capacity. Moreover, the emission standard of air pollutants should not be stricter any more in coal-fired power industry. Furthermore, the huge amount of combined heat and power (CHP) coal-fired units should be operated in a decoupled way, so as to release more than 350 GW regulation capacity for the grid to accept more renewable energy power.

关键词: coal-fired power     development strategy     eliminating outdated capacity     peak shaving     emission reduction     renewable energy    

Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy

《化学科学与工程前沿(英文)》   页码 1616-1622 doi: 10.1007/s11705-022-2183-x

摘要: Adsorptive separation of acetylene/carbon dioxide mixtures by porous materials is an important and challenging task due to their similar sizes and physical properties. Here, remarkable acetylene/carbon dioxide separation featuring a high dynamic breakthrough capacity for acetylene (4.3 mmol·g–1) as well as an ultralow acetylene regeneration energy (29.5 kJ·mol–1) was achieved with the novel TiF62–-pillared material ZU-100 (TIFSIX-bpy-Ni). Construction of a pore structure with abundant TiF62– anion sites and pores with appropriate sizes enabled formation of acetylene clusters through hydrogen bonds and intermolecular interactions, which afforded a high acetylene capacity (8.3 mmol·g–1) and high acetylene/carbon dioxide uptake ratio (1.9) at 298 K and 1 bar. Moreover, the NbO52– anion-pillared material ZU-61 investigated for separation of acetylene/carbon dioxide. In addition, breakthrough experiments were also conducted to further confirm the excellent dynamic acetylene/carbon dioxide separation performance of ZU-100.

关键词: adsorption     acetylene/carbon dioxide separation     dynamic capacity     anion-pillared hybrid material    

Buffer capacity of granular matter to impact of spherical projectile based on discrete element method

Ying YAN, Pengfei LI, Shunying JI

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 50-54 doi: 10.1007/s11709-013-0186-x

摘要: Granular matter possesses impact-absorbing property due to its energy dissipation character. To investigate the impact-absorbing capacity of granular matter, the discrete element method (DEM) is adopted to simulate the impact of a spherical projectile on to a granular bed. The dynamic responses of the projectile are obtained for both thin and thick granular bed. The penetration depth of the projectile and the first impact peak are investigated with different bed thicknesses and impact velocities. Determining a suitable bed thickness is crucial to the buffering effect of granular matter. The first impact peak is independent of bed thickness when the thickness is larger than the critical thickness.

关键词: granular matter     impact peak     buffer capacity     discrete element method     critical thickness    

Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions

Weihua ZENG,Bo WU,Ying CHAI

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 114-128 doi: 10.1007/s11783-014-0669-6

摘要: A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Feedback loops can be analyzed to increase the water environmental carrying capacity (WECC) of the new urban water metabolism system (UWMS) over that of a traditional UWMS. An analysis of the feedback loops of an UWMS was used to construct a system dynamics (SD) model for the system under a WECC restriction. Water metabolic processes were simulated for different scenarios using the Tongzhou District in Beijing as an example. The results for the newly developed UWM case showed that a water environment of Tongzhou District could support a population of 1.1926 × 10 , an irrigation area of 375.521 km , a livestock of 0.7732 × 10 , and an industrial value added of ¥193.14 × 10 (i.e. about US$28.285× 10 ) in 2020. A sensitivity analysis showed that the WECC could be improved to some extent by constructing new sewage treatment facilities or by expanding the current sewage treatment facilities, using reclaimed water and improving the water circulation system.

关键词: urban water metabolism system (UWMS)     system dynamic simulation     water environmental carrying capacity (WECC)     feedback loops     bilateral control    

Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions

《环境科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 3-3 doi: 10.1007/s11783-021-1437-z

摘要:

Microplastics (MPs) are widely present in a variety of environmental media and have attracted more and more attention worldwide. However, the effect of MPs on the interaction between heavy metals and soil, especially in soil solid fraction level, is not well understood. In this study, batch experiments were performed to investigate the adsorption characteristics of Cd in bulk soil and three soil solid fractions (i.e. particulate organo matter (POM), organic-mineral compounds (OMC), and mineral) with or without polypropylene (PP) MPs.

关键词: Polypropylene microplastics     Cadmium     Adsorption     POM     OMC     Mineral    

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield

《结构与土木工程前沿(英文)》   页码 901-914 doi: 10.1007/s11709-023-0915-8

摘要: The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints. This study focuses on the mechanical characteristics and mechanism of a bolted circumferential joint during the entire bearing process. Simplified analytical algorithms for four stress stages are established to describe the bearing behaviors of the joint under a compressive bending load. A height adjustment coefficient, α, for the outer concrete compression zone is introduced into a simplified analytical model. Factors affecting α are determined, and the degree of influence of these factors is investigated via orthogonal numerical simulations. The numerical results show that α can be specified as approximately 0.2 for most metro shield tunnels in China. Subsequently, a case study is performed to verify the rationality of the simplified theoretical analysis for the segment joint via numerical simulations and experiments. Using the proposed simplified analytical algorithms, a parametric investigation is conducted to discuss the factors affecting the ultimate compressive bending capacity of the joint. The method for optimizing the joint flexural stiffness is clarified. The results of this study can provide a theoretical basis for optimizing the design and prediciting the damage of bolted segment joints in shield tunnels.

关键词: shield tunnel     segment joint     joint structural model     failure mechanism    

A method to calculate working capacity space of multi-DOF manipulator and the application in excavating

Baochen WEI, Feng GAO

《机械工程前沿(英文)》 2012年 第7卷 第2期   页码 109-119 doi: 10.1007/s11465-012-0323-6

摘要:

Working capacity refers to the velocity output and force output of a manipulator. It is usually be represented by output capacity space. In this paper, the method of Linear Programming and a geometric method are proposed to calculate working capacity spaces in different situations. With the consideration of gravity effect of every component, the output force capacity space of heavy duty manipulators is calculated. The results show that the effect of the gravity is a translation of the capacity space. This paper gives a method for the output capacity express especially for heavy duty manipulators. The output capacity space can be helpful to the driving parameters selection. With the consideration of the gravity effect of every component and the friction at the joints, the excavating force capacity space of the heavy-load excavating mechanism is calculated and is represented as a multi-dimensional polytope. The results show that the effect of the gravity and friction is to translational act on the capacity space.

关键词: working capacity     multi-DOF manipulator     capacity polytope     excavating mechanism    

Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis

Mehdi VEISKARAMI, Ghasem HABIBAGAHI

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 446-455 doi: 10.1007/s11709-013-0227-5

摘要: An estimate of the ultimate load on foundations on soil layers subject to groundwater flow has been presented. The kinematic approach of the limit analysis was employed to find the upper-bound limit of the bearing capacity. Both smooth and rough base strip foundations were considered associated with different collapse patterns. Presence of the groundwater flow leads to a non-symmetric collapse pattern, i.e., a weak side and a strong side in two-sided collapse patterns, depending on the direction of the flow. It was found that the bearing capacity has a decreasing trend with increase in the groundwater flow gradient and hence, a reduction factor has been introduced to the third term in the bearing capacity equation as a function of the flow gradient.

关键词: foundation     bearing capacity     limit analysis     numerical computation     plasticity     seepage    

Analysis on shear capacity of prestressed concrete spatial connections

XUE Weichen, LIU Zhenyong, JIANG Dongsheng

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 309-317 doi: 10.1007/s11709-008-0052-4

摘要: Based on experimental results of prestressed concrete spatial connections, nonlinear finite element models were established to analyze the shear capacity of spatial connections and parametric studies were performed using ANSYS. It is found that the shear capacity of spatial connection is influenced by joint hoop, beam prestress, column compressive load, and direction of resultant shear force. The parametric studies also indicate that the shear capacity of spatial connection under biaxial cyclic loading is lower than that of corresponding connections under plane loading. A design formula for calculating the shear capacity of spatial connections is proposed based on the parametric studies and verified by the available test results.

关键词: available     direction     nonlinear     capacity     compressive    

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 566-583 doi: 10.1007/s11709-023-0905-x

摘要: The analysis of the bearing capacity of strip footings sited near an excavation is critical in geotechnics. In this study, the effects of the geometrical features of the excavation and the soil strength properties on the seismic bearing capacity of a strip footing resting on an excavation were evaluated using the lower and upper bounds of the finite element limit analysis method. The effects of the setback distance ratio (L/B), excavation height ratio (H/B), soil strength heterogeneity (kB/cu), and horizontal earthquake coefficient (kh) were analyzed. Design charts and tables were produced to clarify the relationship between the undrained seismic bearing capacity and the selected parameters.

关键词: excavation     finite element limit analysis     heterogeneous soil     strip footing     undrained bearing capacity    

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1016-1024 doi: 10.1007/s11709-021-0751-7

摘要: This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.

关键词: kaolin     physical modeling tests     stabilization     numerical modeling    

标题 作者 时间 类型 操作

Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region

期刊论文

Will Germany move into a situation with unsecured power supply?

Harald SCHWARZ

期刊论文

Reduction of hexavalent chromium with scrap iron in a fixed bed reactor

Yin WANG, Xuejiang WANG, Xin WANG, Mian LIU, Siqing XIA, Daqiang YIN, Yalei ZHANG, Jianfu ZHAO

期刊论文

Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance

Lijing MENG, Licheng LIU, Xuehong ZI, Hongxing DAI, Hong HE, Zhen ZHAO, Xinping WANG,

期刊论文

An overview of the development history and technical progress of China’s coal-fired power industry

Weiliang WANG, Zheng LI, Junfu LYU, Hai ZHANG, Guangxi YUE, Weidou NI

期刊论文

Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy

期刊论文

Buffer capacity of granular matter to impact of spherical projectile based on discrete element method

Ying YAN, Pengfei LI, Shunying JI

期刊论文

Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions

Weihua ZENG,Bo WU,Ying CHAI

期刊论文

Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions

期刊论文

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield

期刊论文

A method to calculate working capacity space of multi-DOF manipulator and the application in excavating

Baochen WEI, Feng GAO

期刊论文

Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis

Mehdi VEISKARAMI, Ghasem HABIBAGAHI

期刊论文

Analysis on shear capacity of prestressed concrete spatial connections

XUE Weichen, LIU Zhenyong, JIANG Dongsheng

期刊论文

Undrained seismic bearing capacity of strip footing adjacent to a heterogeneous excavation

期刊论文

Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates

期刊论文